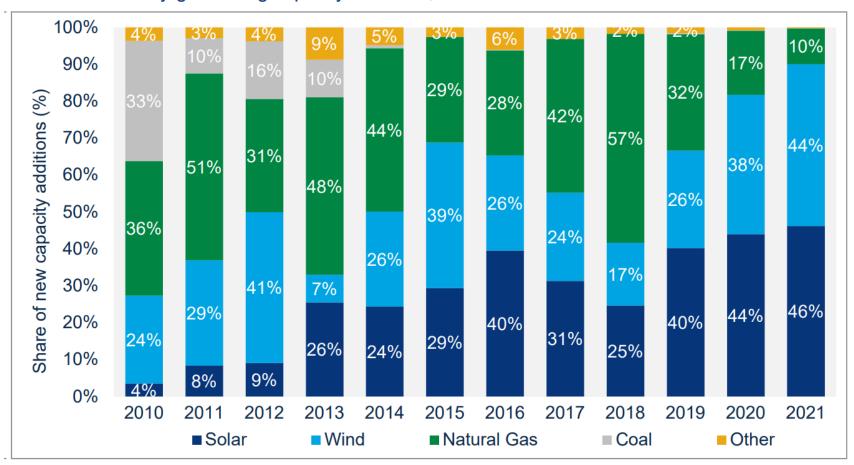


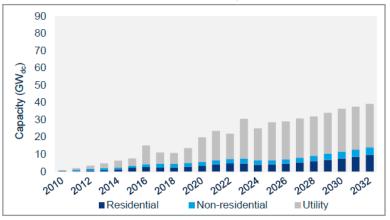
Solar in Context

- Pennsylvania Climate Action Plan (2021)
 - Reduce GHGs 80 percent by 2050, from 2005 levels
 - Increase use of clean, distributed electricity generation resource
 - Create a diverse portfolio of clean, utility-scale electricity generation
- PA DEP's Finding PA's Solar Future (2017-2019)
 - Plan and implementation strategy that aims at reaching 10% of PA's retail electricity sales (approx. 10-12 GW) being generated from in-state solar production by 2030
- DVRPC's Connections 2050
 - Reduce emissions to a net zero level by 2050
 - goal to increase the installed capacity of solar PV to 4.3 GW by 2030 in the Pennsylvania subregion
- Chester County Climate Action Plan
 - Reduce GHGs 80 percent by 2050 from 2005 levels,
 - 100% renewable electricity county-wide by 2050
- Municipalities
 - 15 municipalities in Chester County have passed resolutions to transition to 100% clean and renewable energy by 2050 (electricity by 2035)



Solar PV – New Generating Capacity

New US electricity-generating capacity additions, 2010 – 2021

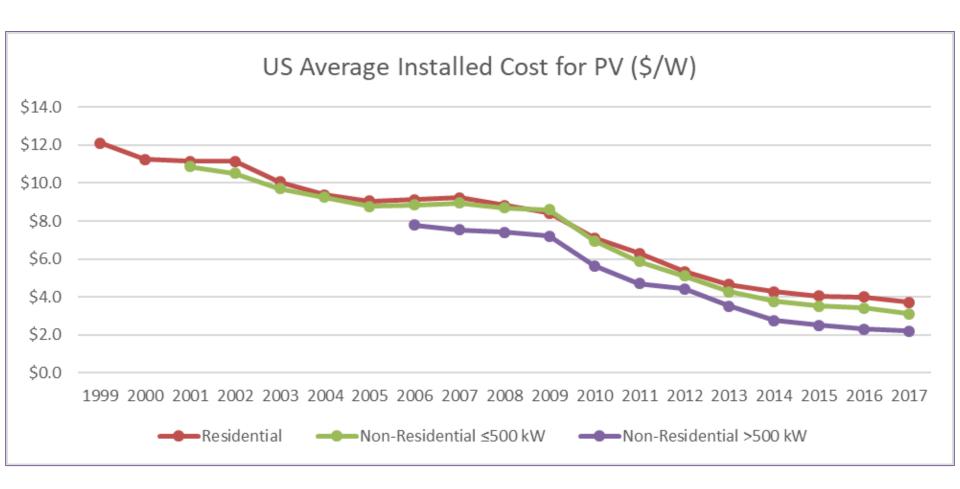


Source: Wood Mackenzie, Federal Energy Regulatory Commission (for all other technologies); Note that some 2021 values were estimated based on Wood Mackenzie's North America Power Service data.

Solar PV – Forecast Capacity

Base case forecasts

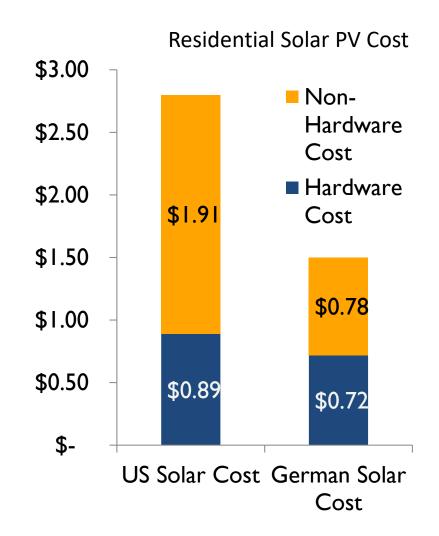
US PV installation historical data and forecast, 2010-2032


ITC extension forecasts

US PV installation historical data and forecast, 2010-2032

Source: Wood Mackenzie; Note that non-residential solar is broken out into commercial solar and community solar for both scenarios through 2026 only. See respective market segment outlook sections.

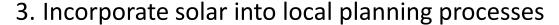
Solar PV Cost



Source: Tracking the Sun LBNL

Solar Soft Costs

- Soft costs: zoning, permitting, inspection, customer acquisition, utility interconnection, etc.
- Residential solar prices have declined 48% since 2010, but majority of savings have come from hardware costs.
- Soft costs have **not** seen a similar reduction. Make up 64% of overall cost of solar.
- Onerous costs slows solar market growth by reducing ROI for solar and impacting installers willingness to do business in an area.



Soft Costs – Local Government Role

Munis can help reduce soft costs by

- 1. Applying for **SOLSMART** designation
- 2. Reducing red tape assoc. with zoning, permitting, inspection. Make processes easier and more transparent.

- 4. Training staff on solar best practices for planning, zoning, permitting, and fire safety
- 5. Educate community on benefits and process of going solar
- 6. Engage the local utility to help drive process improvements
- 7. Install solar on local government facilities
- 8. Encourage or incentivize solar on existing buildings and new construction

SOLSMART

NATIONALLY DISTINGUISHED. LOCALLY POWERED.

ww.solsmart.org

Solsmart Actions center around these items

Solar PV Ordinance Goals

A clear and transparent ordinance that does not include unnecessary restrictions on solar PV installations

Balancing community goals with support for solar PV development.

Solar PV Installations

Accessory Use

(<.35 - <1 acres)

Behind the meter

Source: eeremultimedia.energy.gov

Source: Exact Solar

Medium Scale

(.35 -15 acres)

- Behind the meter or
- Feeding the grid (PPA or Community solar - not legal...yet

Source: Solar States

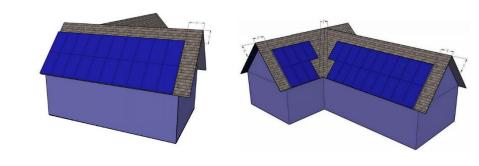
Source: Liz Compitello

Utility Scale

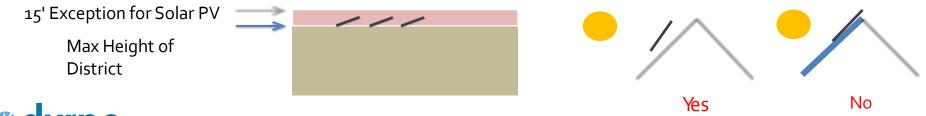
(>15 acres)

Feeding the grid

Source: SEPTA



	Section	Topics to Address	
	Intent/Purpose	 Solar as an inherently beneficial use Desire to balance this use with community goals Tie to MPC if stand-alone 	
	Definitions: Clearly define types and sizes of solar PV	 Ground Mounted Solar Energy System Roof Mounted Solar Energy System 	Define "size" by acreage (not capacity): • Accessory Use • Medium Scale • Large Scale
	Applicability	Accessory use – by right in all major zones Medium Scale – by right where possible Utility Scale – Prohibit in residential and nearby. Special Exception or Conditional Use Permit, site plan review	
	Dimensional Standards	• Height	SetbacksLot coverage
	Design Standards	• Signage	ScreeningFencing
% dv	Other rpc	Protecting farmland+ AgrovoltaicsHistoric Districts	 Protecting Trees Decommissioning Solar Access


Rooftop Accessory Use Dimensional Standards

Setbacks:

- Needed for access + First Responder Safety.
- Codified in the Fire Code (3' from ridge, 3' access (side or bottom)

Height:

Ground Mounted Accessory Use Dimensional Standards

Lot standards

- Ground mounted should be considered pervious if area underneath is Height
- Underlying accessory use regulations may be prohibitive if height limit is less than 15', consider exempting if so.
- Parking canopies allow exception if solar is covering impervious parking surface. Height shouldn't exceed primary use height, should allow for emergency vehicles.

Setbacks

- Accessory use setbacks may be appropriate
- May wish to require no ground mounted systems in front or side yards

Source: Exact Solar

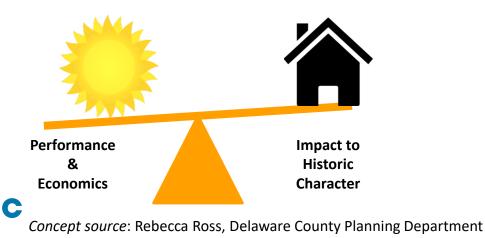
Source: Exact Solar


Design and Dimensional Standards – Accessory Use Avoiding Unnecessary Barriers

Barriers that can limit functionality/add cost:

- Aesthetic concerns should not drive the ordinance
 - Sensible height and setback requirements should be enough to curb less attractive installations
 - Do not require solar to be invisible from public rights-of-way
 - Except historic districts
 - Ground mounted: restrict systems in the front yard in most districts
- Glare studies are unnecessary for small, (medium, and large) solar PV systems
 - Solar PV designed to absorb light
 - Solar PV covered in anti-reflective material
 - Only really required on FAA adjacent property
- Fencing/screening should not be included
 - This is covered by the National Electric Code for ground mounted systems

Source: HelioPower,


Source: Liz Compitello

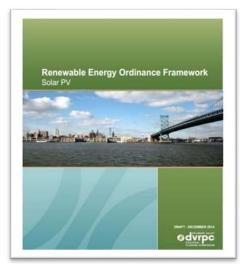
Historic Preservation

Historic Preservation

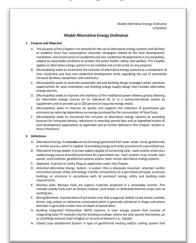
- Minimize visibility
 - Rear slopes, on new construction, ground mounted
- Should be reversible and not damage the property
- Resource: NREL Implementing Solar PV Projects on Historic Buildings and in Historic Districts

Medium and Utility Scale Solar PV

- Ensure the zoning ordinance establishes a clear regulatory pathway for large-scale solar PV
 - Special use permit, subject to site plan review
 - Consider making some medium-scale projects by right
- Glare studies should not be required (unless FAA adjacent)
- Stormwater management
 - Can be considered pervious if proper treatment of groundcover
 - Stormwater management plan required
- Buffers (vegetative) along roadways, viewsheds.
 - Require native species if possible.
- Protect Agricultural resources
 - Encourage/enable (and define) "Agrovoltaics" (co-location of solar and agricultural resources)
 - Require that in Agricultural Zoning Districts, no more than 50/75 percent of the entire area for development shall consist of Class I and Class II prime agricultural soils (unless using agrovoltaics)
 - Require native/perennial, pollinator-friendly vegetation for a % of the development
- Decommissioning
 - Require a decommissioning plan that specifies timing/circumstance, restoration criteria, disposal, and cost. Update regularly? Bonding/security?
- Tree Removal
 - Strongly discourage ("to extent practicable") or prohibit tree removal.
 - Tie tree restoration to SALDO requirements if applicable.

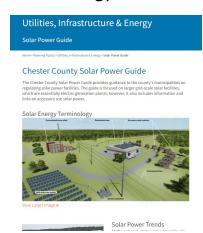


Source: SEPTA



Source: Getty

Regional Resources


DVRPC Solar Energy Ordinance Framework

Bucks County Model Alternative Energy Ordinance

Montgomery County Renewable Energy Series

https://chescoplanning.org/uandi/solarpowerguide/

Coming soon:

Guidance for medium-large scale solar PV

-DVRPC, Counties

Thank you!

Liz Compitello

Manager, Sustainable Energy

DVRPC

ecompitello@dvrpc.org